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The momentum of the solar energy
transition

Femke J. M. M. Nijsse 1 , Jean-Francois Mercure 1,2,3, Nadia Ameli 4,
Francesca Larosa 4,5, Sumit Kothari 4, Jamie Rickman4, Pim Vercoulen 1,6 &
Hector Pollitt2,3

Decarbonisation plans across the globe require zero-carbon energy sources to
be widely deployed by 2050 or 2060. Solar energy is themost widely available
energy resource onEarth, and its economic attractiveness is improving fast in a
cycle of increasing investments. Here we use data-driven conditional tech-
nology and economic forecasting modelling to establish which zero carbon
power sources could become dominant worldwide. We find that, due to
technological trajectories set in motion by past policy, a global irreversible
solar tipping point may have passed where solar energy gradually comes to
dominate global electricity markets, without any further climate policies.
Uncertainties arise, however, over grid stability in a renewables-dominated
power system, the availability of sufficient finance in underdeveloped econo-
mies, the capacity of supply chains and political resistance from regions that
lose employment. Policies resolving these barriers may bemore effective than
price instruments to accelerate the transition to clean energy.

A rapid transformation of the energy system is necessary to keep
warming well below 2 °C, as set out in the Paris Agreement and rein-
forced in the Glasgow Pact. Many countries have committed to
achieving net-zero targets by 2050 (incl. EU, UK, Japan, Korea), 2060
(China) or 2070 (India). Net-zero targets implymass-scale deployment
of zero-carbon energy technologies such as solar and wind power,
likely in combination with negative emission technologies1. However,
the potential for negative emissions to compensate positive emissions
remains relatively limited2,3.

Renewables have historically been considered expensive, their
deployment requiring high subsidies or carbon taxes4,5. However,
following a fruitful history of innovation and past climate policy,
renewables now increasingly compete with fossil fuels6,7. Whether
renewables become the new normal increasingly hinges upon
industry and trade development rather than a pure normative
necessity to meet carbon budgets7–9. Policy-makers urgently need to
knownot onlywhether a renewables future is possible, butwhether it
is materialising.

Between 2010 and 2020, the cost of solar PV fell by 15% each year,
representing a technological learning rate of around 20% per doubling
of installed capacity8. At the same time, the installed capacity has risen
by 25% per year, causing and partly caused by these cost reductions.
Meanwhile, onshore wind capacity grew by 12% a year, with a learning
rate of 10% per doubling of capacity8,9. If these rates of rapid co-
evolution are maintained, solar PV and wind power appear ready to
irreversibly become the dominant electricity technologies within 1-2
decades, as their costs and rate of growth far undercut all alternatives.
Were that to be the case, a renewables tipping point in the power
sector could be imminent or even already have been passed, and the
policy and finance spheres should prepare for a rapid disruptive
transition. Despite this evidence, the energymodelling community has
not yet identified this possibility with any degree of consensus8, sug-
gesting instead that fossil fuel-dominated electricity systems would
likely continue as a result from inadequate carbon pricing.

The problem of high cost for renewables has changed into a
problem of balancing electricity grids, in which large amounts of
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intermittent wind and solar generation pose challenges. Batteries play
an important role in mitigating that issue and show a similarly high
learning rate10. This implies that electricity storage costs and diffusion
could follow a comparable and coupled trajectory to PV in the 2020s.

Whether solar and wind can dominate electricity grids depends
on the ability of the technology to overcome a series of barriers. This
includes how to dealwith the seasonal variation for which batteries are
ill-suited11. The cost ofmanaging large amounts of intermittency could
offset further cost reductions in solar panels and wind turbines,
impeding their rapid diffusion12. The unequal availability of finance to
support solar and wind investments in various countries13 may be an
issue, too. Supply chains may be poorly prepared for such a rapid
technological roll out14. Finally, political resistance in areas of declining
fossil fuel use or trade could curb the willingness of governments to
embrace a solar revolution15.

Here, we use a global, data-driven energy-technology-economy
simulation model (E3ME-FTT) to conditionally forecast the deploy-
ment of energy technologies up to 2060, under current policy
regimes. We focus on identifying the existence of a tipping point for
solar andwind, assuming that no further policy is adopted to usher in a
solar andwind-dominated electricity system.We then explore in detail
the various barriers that could impede this renewables revolution, and
identify what non-traditional policies could be used to bridge
those gaps.

Historical projections of energy generation have consistently
underestimated uptake rates of solar energy16,17. For example, only a
year after the publication of the 2020 World Energy Outlook (WEO),
the IEA’s “Stated policies scenario” has been revised strongly in favour
of solar energy. Nevertheless, the total share of solar in power pro-
duction only reaches 20% by 2050 in that baseline scenario despite
historically low prices18. Systematic underestimation of low-carbon
technology deployment in energymodels could stem from systematic
lack of suitable or realistic representation of induced innovation and
diffusion processes19–21.

Solar energy started its journey in niche markets, like most inno-
vations, supplying electricity to applications where little alternatives
existed in space and remote locations22. Since then, cumulative
investments and sales, driven by past policy, have made its cost come
downby almost threeorders ofmagnitude. The introductionof feed-in
tariffs in mainly Germany induced a volume of investment and related
cost reductions, that brought the technology to mainstream markets
following Chinese involvement in supply chains7.

Cost reductions and rapid deployment work hand in hand,
something observed for many technologies7. Deployments typically
followRogers’ S-curve diffusion23, with a bi-directional interactionwith
cost reductions from Wright’s law24. For solar (and wind), rapid
deployments, supported by past policies, have pushed down tech-
nology costs. This promotes further diffusion in a virtuous cycle7. Such
nonlinearity in the diffusion process raises the possibility of an irre-
versible tipping point25.

There are many reasons why solar has experienced such high
learning rates. Its simplicity, modularity and mass-scale replicability
allow for significant learning opportunities, related to those seen
across the electronics industry26–28. Indeed, numerous spillovers have
originated from the computer industry22. Innovation and improve-
ments to solar PV are ongoing. For instance, the commercialisation of
(hybrid) perovskite cells holds promises for higher efficiencies and
lower unit prices29,30. Due to decreasing technology risks and financial
learning, finance is partly cheaper to procure31. Progress in recycling
helps material supply security and may decrease life-cycle costs32.
Meanwhile, the chemical diversity of batteries, a storage technology
highly supportive of solar PV, makes it likely that further cost declines
can be achieved33.

The historical failure of the modelling community to anticipate
the rapid progress of solar power could stem from an over-reliance

outdated data, the lack of use of learning curves, and the imposition of
maximum deployment levels and floor costs16,34. As the primary inno-
vation in this paper, forecasting technology evolution and induced
innovation can more effectively be achieved based on evolutionary
simulations, using the most recent data available, that focus on the
two-way positive feedback between induced innovation and
diffusion24,35.

This work supplements recent research by Way et al.16. Way et al.
developed a probabilistic empirically validated globalmodel of energy
technology costs. The research showed that a scenario of high
renewables uptake leads to a significantly lower-cost energy system,
and the authors argued that energy models should be updated to
reflect the high probability of low-cost renewables. This paper differs
in two key ways: 1) we do not impose a scenario, but rather allow
investor decisions todictate thedeployment of technologies. 2)weuse
a globally disaggregated model and look at region-specific alternative
sources of electricity.

Results
Towards a new baseline scenario
Following the recent progress of renewables, fossil fuel-dominated
projection baselines are not realistic anymore. Here, we focus on the
co-evolving dynamics of diffusion and innovation to project themid to
long-term diffusion trajectory of 24 power technologies. We use the
historical data-driven E3ME-FTT integrated energy-economymodel, in
which a system dynamics simulation method, combined with choice
modelling (see Methods), tracks the positive feedbacks that emerge
between cost reductions and diffusion, something not usually repre-
sented in models that have fixed yearly learning5. We use IEA data for
historical generation, CAPEX and OPEX, BNEF for capacity factors,
construction and lifetimes until 2020, IRENA for historical renewables
capacity data between 2019 and 2021.

Technological trajectories typically have inertia in their diffusion
that dependon their lifecycle turnover,with half-lives ranging between
10 and 15 years for short-lived units (cars), 25–40 years for fossil fuel
plants, and 50–100 years for long-lived infrastructure, such as nuclear
plants and hydro dams36. These long lifetimes prevent technological
trajectories from changing direction abruptly. This autocorrelation
time in the direction of evolution (or degree of inertia) implies that
energy system technological forecasting constrained by observed
diffusion and cost trajectories, as done here, can be reliable within at
least 15-20 years, subject to an increasing error that cumulates over the
simulation time span.

Figure 1 shows the global share of electricity production of 11 key
technologies (Supplementary Figure 1 for a regional breakdown). The
current mix is highly varied. By mid-century, according to E3ME-FTT,
solar PV will have come to dominate the mix, even without any addi-
tional policies supporting renewables. This is due to solar costs
declining far below the costs of all alternatives, while its parent
industrial supply capacity increases rapidly. Its scale expands, because
of its current rapid and exponential diffusion trajectory and com-
paratively high learning rate. Even the market shares of onshore and
offshore wind power in the global electricity mix start declining
around 2030, outpaced by solar. This is due to a lower learning rate of
wind compared to solar and agrowing cost gap in themodel. However,
onshore continues growing in absolute terms until 2040, and offshore
to the end of the simulation. Concentrated solar power grows over the
entire period, butwithout targeted policy its overall share in the power
mix remains small, despite its advantage as a dispatchable source of
electricity.

The trend towards renewables dominance (Fig. 2a) and notably
solar PV (Fig. 2b) appears imminent in China, and lags in Africa and
Russia. Africa lags despite a very high technical potential and low
seasonality. The slowuptake canmostly be attributed to nonpecuniary
aspects (grid flexibility, trust in new technologies), which requires
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prices to fall further below alternatives before there is significant
uptake. This occurs after uptake by other countries drives down prices
further.

The levelised cost of electricity (LCOEssc, which includes system
storage costs, see Methods) is shown in Fig. 3. We tentatively assign
additional system costs for storage to be borne by renewable energy
producers. Even though storage needs increase substantially over
time, LCOE for solar energy decreases overall. This is because the
learning rate for short-term storage is very high, and the learning rate
for long-duration storage (we assume hydrogen is used for seasonal
storage) is expected to be relatively high too8. Of the major countries
shown, solar PV is initially more expensive than coal only in Japan,
where cost-parity is reached around 2025.

In 2020, wind energy has the lowest LCOE in a majority the 70
regions defined in the E3ME-FTTmodels (Fig. 4). Where this is not the
case, solar PV, nuclear or coal dominate. By 2030, this has flipped, in
favour in solar power across most of the world (see Supplementary
Figs. 2 and 3 forworst/best casemaps).We assume a uniformdeclining
cost per kWof PV panels worldwide, with differing solar irradiation for
each region. This assumption is based on empirical findings37. Due to

this international spillover effect, most regions of the world are likely
going to gain access to low-cost solar energy. As such, a region may
reach cost parity between solar and the cheapest alternative through
the influence of other countries on the scale of production and costs,
even if cumulative investments in that region are modest. This implies
that developing countries could become realistic markets for solar
energy even when the capacity of their governments to implement
climate policies remains limited.

Figure 5 shows the robustness of the result to a set of model
assumptions (see Methods). The two most important sources of
uncertainty are potential delays in making necessary grid adjustments
and the learning rate for wind power. If installing solar power plants
takes twice as long due to delays with grid expansions, the median
share of solar in 2050 drops by 16 percentage points. Notably, with
solar prices far below alternatives, higher learning rates have a small
effect on diffusion. Overall, in 72% of the simulations done for
robustness testing, solarmakes upmore than 50%of power generation
in 2050. This suggests that solar dominance is not only possible but
also likely.

These projections and sensitivities give us some confidence to
suggest that realistic energy model baselines should, from now on,
include substantially larger shares of solar energy than what is com-
monly assumed, as they make coal and gas-dominated baseline sce-
narios largely unrealistic. Themain scenario framework assessed in the
IPCC reports, the socialeconomic pathways (SSPs), include scenarios
with increasing reliance on coal to the energymix38. This work notably
indicates these scenarios are highly improbable.

The above projections appear robust with respect to cost and
technical factors included in the model. However, systemic problems
not modelled could, nevertheless, develop into barriers hindering
achieving climate targets. This suggests that further climate policy
action should focus on addressing these barriers.

Overcoming barriers
We highlight four barriers that go beyond considerations of levelized
costs and a) may significantly slow down the solar tipping point if
unaddressed b) are global and c) are not fully implemented into inte-
grated assessment models. The four identified encompass the tech-
nological, policy,market and economic, regulatory, political and social
barriers identified by the literature39 as the most relevant for solar PV
deployment in the next three decades.

As a first barrier, we consider grid resilience. In many published
energy scenarios with higher shares of solar and wind power, “dark
doldrums”, periods of simultaneously low wind speeds and solar irra-
diation, form the predominant vulnerability40. From geophysical con-
straints, it is possible to compute an optimal mix of wind and solar
power, which maximises the match between supply and demand. The

Fig. 1 | Worldwide share in electricity production of various technologies. In
2020, fossil fuels produce 62% of electricity. This percentage reduces to 21% in
2050, with solar responsible for 56% of production.

Fig. 2 | Renewable share of electricity. a total renewables (hydro + wind + solar + biomass) and (b) solar PV. Initially, renewables are dominated by hydropower and to a
lesser extent wind. This is soon overtaken by solar, depending on regional factors.
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typical optimal share of solar when 12 h of battery storage is available
lies between 10–70%, depending on geography. Where less storage is
available, the optimal mix shifts towards more wind power11. When
either of the twomain technologies is (near)-absent, the grid becomes
more vulnerable to weather fluctuations. As such, solar-dominated
grids may not be desirable. Importantly, no mechanism guarantees
that optimal grids are achieved if left to market forces, especially in
contexts of diverging technology costs, and solar dominance could
become self-limiting. While E3ME-FTT models grid constraints of a
typical year, weather extremes are not considered.

The self-limiting effect of solar PV diffusion due to intermittency
can be overcome with a policy mix supporting wind power and other
zero-carbon energy sources, as well as improved storage, grid con-
nections and demand-response. Notably, new power market rules can
be designed to incentivise investment in generators that complement

solar production on a daily to seasonal scale, according to the savings
in storage that they generate. Specifically, our model suggests that the
allocation of storage costs to the grid and charged directly to con-
sumers incentivises more renewables diffusion than requiring renew-
ables to carry the full burden of storage needs (see Fig. 5), leading to
lower overall system costs41.

Secondly, the availability of finance may act as a barrier. Solar
growth trajectories will inevitably dependon the availability of finance.
Low-carbon finance is presently highly concentrated in high-income
countries42. Even international North-South flows largely favour
middle-income countries, leaving lower income countries – particu-
larly those in Africa – deficient in solar finance despite the enormous
investment potential42.

This unequal distribution of finance reflects different investment
risk considerations across countries. Differences in local financial

Fig. 3 | Regionally weighted average levelised cost of electricity (LCOE),
including system storage costs and excluding policies. a EU-27 (b) United States
(c) India (d) China (e) Japan and (f) Brazil. Shaded areas are the 10–90% confidence

interval. Solar PV + system storage is already among the cheapest forms of elec-
tricity. In some regions, wind and solar remain competitive, whereas solar becomes
muchcheaper inothers.Without carbon taxation, coal is typically cheaper thangas.

Fig. 4 | Technology with the lowest LCOEssc by year and E3ME region. Eachmap shows the 70 E3ME regions: in 2020 (a), 2023 (b), 2027 (c) and 2030 (d). The biggest
shift occurs between 2020 and 2027, which sees a range of technologies give way to solar PV as the cheapest source of electricity.
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environments, such as macroeconomic conditions, business con-
fidence, policy uncertainty and regulatory frameworks impact risk
perceptions and the willingness to invest by domestic and interna-
tional actors13. Equity investors and financial lenders apply high-risk
premiums in perceived risky regional contexts, thus increasing the
cost of capital for renewable projects13,43.

Developing countries are particularly financially and fiscally con-
strained. Domestically they are characterised by under-developed
capital markets and lack capital stock44; whereas international finance
is restricted due to high sovereign risks and local currency risks on
account of volatile economic fundamentals (as projects are funded
with foreign currency while returns are generated in local
currencies45,46). This leads to a chronic lack of available finance to
support investments in solar energy.

Energy sector deficiencies further exacerbate the negative
investment outlook for solar projects. Weak contract enforcement,
changing energy regulations, and underdeveloped electricity markets
affect project returns and investment viability. Developing countries
may also face high import costs due to shortages in foreign currency
reserves needed to support an expanding solar sector.

Consequently, a key challenge for global solar deployment lies in
themismatch between high investment needs (see Fig. 6 for modelled
investment needs) and finance flows mobilised in developing
countries44. Latest estimates suggest that climate financial flowswould
need to increase by a factor 4 to 8 in most vulnerable countries (IPCC
2022)47. Strategies to address this finance gap should include
mechanisms to absorb currency and investment risk as a bridge to
unlock international capital flows while creating domestic financial
capacity over time.

As a third barrier, we discuss supply chains. A solar-dominated
future is likely to be metal and mineral-intensive48. Future demand for
“critical minerals” will increase on two fronts: electrification and bat-
teries require large-scale raw materials – such as lithium and copper;
niche materials, including tellurium, are instrumental for solar
panels49. As countries accelerate their decarbonisation efforts,
renewable technologies are projected tomake up 40% of totalmineral
demand for copper and rare earth elements, between 60 and 70% for
nickel and cobalt, and almost 90% for lithium by 204014.

The notion of criticality comes in three forms: physical, economic,
and geopolitical. Firstly, there are risk associated with low reserves.
Secondly, minerals supply typically reacts slowly to short-term chan-
ges in demand in, due to the long times required to establish mineral
supply chains. This could lead to price rallies. The construction of new
mining facilities (from exploration to mine operations) requires on
average 16.5 years14 and may be stalled due to concerns about socio-
environmental impacts50.

The geopolitical supply reliability of critical minerals is also weak,
since mineral production displays higher geographical concentration,
compared to fossil fuels production. China and The Democratic
Republic of Congo, for example, own 60% and 70% of current global
production of rare earth minerals and cobalt respectively51. Domestic
shocks, including growing climate risks and political instability, could
hamper the extraction and production and generate price shocks that
along the value chain, impacting solar technology costs. Electricity
networks could suffer similar impacts for nickel and aluminium.

Risk associated with low reserves can be mitigated with (research
into) substitutions52. Recycling and circular economy processes can
further reduce extraction rates, but re-used materials are unlikely to
meet future demand as it outgrows existing stocks53.

Lastly, resistance from declining industries may impact the tran-
sition. The pace of the transition depends not only on (economic)
decisions by entrepreneurs, but also on how desirable policy makers
consider it. Solar energy aligns with many policy objectives (clean air,
poverty alleviation, energy security54). It also has disadvantages for
some of the players involved, as it leads to rapid economic and
industrial change.

Solar and wind power have a low energy density compared
to alternatives. In most countries, they can provide enough energy to
meet demand. However, land for renewables may be scarce close to
population centres in some parts of the world55,56. Political tension on
the use of land andwater (for floating photovoltaics57) may increase as
solar shares rise.

A rapid solar transition may also put at risk the livelihood of up to
13 million people worldwide working in fossil fuel industries and
dependent industries. These people are frequently concentrated in
communities close to mines extraction and industrial sites, where the

Fig. 5 | Shares of solar PV in the power sector when varying key inputs. a The
overall histogram of the 2050 shares of solar PV. b The shares solar PV depending
onwho pays for storage costs (variable renewable energy (VRE) sources, or the grid
operator). Box plot elements: Centre line: median, box limit: upper and lower

quartiles, whiskers: 1.5x interquartile range, points: outliers c, Shares of solar PV
depending on the learning rate of onshore and offshore wind energy, d, depending
on the learning rate of solar PV and e, depending on the lead time for solar projects.
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closure of these activities can have severe repercussion on the well-
being of communities decades on58. Policy makers could have sub-
stantial incentives to slow down the transition to limit these direct
impacts. Similarly, many countries currently provide fossil fuel sub-
sidies to increase the purchasing power of low-income households,
difficult to phase out and which reinforce opposition to change. New
coalitions of actors who benefit from the transition (home and land-
owners, people with jobs in clean energy), may counterbalance some
of the resistance from incumbents15, but do not resolve equity issues.
Regional economic and industrial development policy can resolve
inequity, and can mitigate risks posed by resistance from declining
industries59.

Discussion
Without any further energy policy changes, solar energy appears to
follow a robust trajectory to become the future dominant power
source before mid-century. Due to the reinforcing co-evolution of
technology costs and deployment, our analysis establishes quantita-
tive empirical evidence, from current and historical data trends, that a
solar energy tipping point is likely to have passed. Once the combined
cost of solar and storage crosses cost parity with all alternative tech-
nologies in several key markets, its widespread deployment and fur-
ther costs declines globally could become irreversible. This echoes the
results fromWay et al.16, who showed that such a configuration would
be cheaper than alternatives60.

A tipping point towards solar dominance however does not solve
climate change mitigation or achieve climate targets, as it does not
ensure a zero-carbon energy system. Solar-dominated electricity sys-
tems could become locked into configurations that are neither resi-
lient nor sustainable with a reliance on fossil fuel for dispatchable
power. Issues that could hinder achieving zero-carbon energy systems
include grid stability issues, the availability of financial capital and
critical minerals, and the willingness of decision-makers to get
onboard a rapid transition that could generate substantial distribu-
tional issues in their respective regions. The energy crisis resulting
from the war in Ukraine suggests that the acceleratedmove away from
fossil fuels is needed even more urgently.

We conclude that achieving zero-carbon power systems likely
requires policies of a different kind than have traditionally been dis-
cussed by the energy modelling community. The carbon price
required to achieve cost break-even between renewables and fossil
fuels may soon be zero. Instead, it is policies that address the above
barriers—grid resilience, access to finance, management of material
supply chains and political opposition—that may enable success in
reaching net-zero energy emissions.

Methods
E3ME-FTT-GENIE61 is a model based on path-dependent simulation
parameterised by historical data and technology diffusion trajectories.
Integrated assessment models are typically based on utility or whole-
systemcost optimisation. Thosemodels have played an important role
in the energy debate by characterisingwhat anoptimal composition of
the energy system ought to look like. They are less suitable for
studying trends in energy system dynamics since, being driven by a
centralised social planner construct, they neglect historical relation-
ships, economic causality structures and decision-making
processes35,62. In contrast, path-dependent energy system and econ-
omy simulations model system evolution on the basis of known
causality structures and decision-making parameterised by timeseries
and other data, however they do not identify optimal system config-
urations or policy. Decision-making by investors does not always line
up with an optimal system, as investors use shorter time-scales to
evaluate decisions compared to a putative ‘social planner’.

In this paper, we use the energy-economy-environment (E3)
simulation model E3ME-FTT-GENIE. It is grounded in empirically
derived relationships between economic and technology variables,
under the highest sectoral and regional disaggregation available for a
globalmodel (43 sectors and 70 regions) and a large number of energy
technologies (88 technologies). Evolutionary dynamics form the core
of technology evolution where induced innovation plays an important
role; those sectors are represented by the various FTT submodels,
which portray the typical S-shaped dynamics of technology uptake63.
The model includes energy markets for nonrenewable and renewable
energy. The GENIE climate and carbon cycle model is soft-coupled –

emissions from E3ME-FTT drive the GENIE, but the GENIE does not
affect the global economy. A complete set of equations for the E3ME-
FTT model is given in Mercure et al.61, with updates for the Power
model found in Simsek et al.41.

FTT
The Future Technology Transformation (FTT) family of models pro-
vide an in-depth representation of four climate-relevant sectors in
which technological change plays an important role: power,
transport64, heating65 and steel66. These are the four energy end-use
sectors with the highest greenhouse gas emissions. The models are
based on evolutionary dynamics, simulating the S-curve of technology
uptake characteristic of innovation23. Its core is the replicator
dynamics equation (known as the Lotka-Volterra equation), prominent
in ecosystem population dynamics modelling67.

The direction of diffusion of a technology in FTT is primarily
driven by comparing the levelised cost of technology options in chains

Fig. 6 | Investments in new generating capacity. a shows power sector invest-
ments as a percentage of GDP. The strong peak around 2030 for China and India is
explained by a saturation in addition of additional solar capacity, in combination
with a growing GDP and declining solar costs. b shows power sector investment

with respect to 2019 values. Investment is forecast to see a fast growth worldwide
relative to historical trends. Various regions in the Global South, in particular India
andAfrica, will see aneven steeper rise in investment ingenerating capacity bymid-
century, due to projected rapid economic growth.
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of binary discrete choice models, where the frequency of choice
options availability is weighted by the share of those options in the
technologymix. The levelised costs being compared aredesigned as to
be a suitable depiction of decision making in each specific sector. A
factor is included in each levelised cost, that captures non-pecuniary
aspects otherwise not be captured with available data on costs alone.
These are calibrated to match observed diffusion trajectories for each
technology. For instance, technologies that aremore socially attractive
than their market costs suggest will have a negative factor included in
the LCOE.

FTT. Power represents the diffusion of 24 technologies in the power
sector. It includes nuclear, a set of bio-energy technologies, seven
technologies based on the combustion of fossil fuels (including CCS
options). Onshore and offshore wind, solar PV and CSP, hydro power,
tidal, geothermal and wave power are also represented. FTT:Heat
depicts the competition between various combustion technologies
(oil, coal, wood and gas- burning) in households, as well as electrified
heating options (resistive electric heating and heat pump technolo-
gies) and finally district and solar heating. FTT:Transport models the
competition between petrol, diesel, LPG, EVs and hybrid passenger
vehicles, as well asmotor vehicles. For each base technology, there is a
further disaggregation based on the luxury of the vehicle. Finally,
FTT:Steel models 25 different routes of steel production: on the basis
of coal, gas, hydrogen and electricity.

FTT:Power
FTT Power follows Ueckerdt et al.68 in its detailed representation of
variable renewables in grid stability. Technologies are classified along
six load bands, and production is allocated to available technologies
based on intermittency and flexibility constraints. This takes into
account the hourly demand over time in a set of key regions, and
hourly supply potential per technology. For each mix of variable
renewables, the optimal curtailment and storage needs are estimated
using the parametrizations fromUeckerdt et al.68. Compared to earlier
treatment in FTT, this implies much improved and less conservative
assumptions over limits to renewables in power grids due to
intermittency41.

The baseline scenario (the only scenario in this paper) includes
the EU Emission Trading System explicitly, as well as the ongoing
nuclear phase-out in Germany and Belgium. Other policies are inclu-
ded implicitly by adding “gamma values” to the LCOE values used for
decision-making by investors. These gamma values are calibrated to
produce short-term projection of power capacity shares in each
country that is consistent with the recent historical trend, by mini-
mising the difference in rate of growth or decline at the changeover
point between history and simulation. As a conservative assumption,
we do not include a premature retirement of power plants when their
marginal costs rise above the LCOEofnewly installed power plants.We
also do not include the possibility to extend the lifetimes of power
plants.

The CAPEX and OPEX costs are derived from the IEA’s Projected
Costs of Generating Electricity 2020, and medians are used to fill in
missing data. For solar, we use utility-scale solar prices. Residential
solar power is more expensive, but the attractiveness for consumers is
heightenedby the fact they avoid various taxes on electricity. Standard
deviations of these costs are also derived from this dataset; thismeans
that volatility over time is not captured in our uncertainty.

This paper includes a further set of updates to FTT:Power that
collectively favour the diffusion of solar PV into the electricity mix.
Based on historical data from BNEF (see Supplementary Figure 4), we
introduce learning in operational costs, rather than only in CAPEX,
which mostly benefits offshore wind and solar PV. Learning rates are
updated for key technologies, following Way et al.8. Both solar power

and wind energy see a higher learning rate than previous model ver-
sions. Based on recent estimates of panel lifetime, we assume that a
solar panel lasts 30 years on average.

Using BNEF data up to 2020, through a whole-model data
upgrade, we update realised capacity factors for onshore, offshore,
and solar technologies to the most recent values. The timescale for
developing offshore wind projects is found to be longer than onshore
wind, which hinders rapid growth.

The technical potential for onshore wind is updated using69,
which has an improved resolution, threshold wind speed and turbine
technical specifications compared to70. For solar power (solar PV and
CSP), we updated the technical potential as the sum of71 (utility-scale
solar) and72 (rooftop solar). We did not include a technical potential57

for application of solar power on water (“floatovoltaics”), as this
technology is still in early stages of development.

Regions with offshore potential, but no installed capacity, are
attributed a small offshore wind capacity, equal to 1/100 the capacity
of onshore wind installed in the region or country. Similar seeding is
performed for CSP, which equals 1/100 the capacity of solar in the
country. For countries without any onshore capacity, a small capacity,
equal to 0.1% of historical generation, is added. This is because tech-
nology with zero deployment will never be selected. Historical instal-
led capacity of renewables is inserted using9.

We innovate by introducing learning in storage technologies,
which were, in the original model, fixed at the estimated 2030 price
levels. For short-term storage we take the average of the learning rate
for lithium-ion batteries and vanadium flow batteries. The latter are
less common currently, but provide more flexibility and have a lower
environmental impact73. The averaged learning exponent is 0.255 and
long-term storage (assumed to be supplied by hydrogen) a more
modest learning of 0.194 based on8. System storage costs are divided
over the variable renewables. Both short-term storage costs and long-
term storage costs increase with a poorer ratio between sun and wind.
CSP only contributes to long-term storage costs, as it contains short-
term storage internally. This is a conservative assumption for variable
renewable energy diffusion, as policymay attribute storage costs to all
grid participants or directly to customers.

The uncertainty analysis of Fig. 3, Fig. 5 and Supplementary
Figure 5 is performed with a Monte Carlo sampling of a set of input
parameters. Input parameters were selected that had the largest
expected impact on the diffusion of power generation technologies.
In half of cases, costs of power storage were attributed equally
among participants in the power market, whereas the costs of sto-
rage were allocated to renewables in the other half (the default).
Inequality around access to capital between countries was modelled
via the discount rate: the costs of finance (WACC/discount rate) was
varied between 0.075 and 0.100 for countries in the OECD, and
varied between 0.100 and 0.125 for all other countries. The learning
rates for solar and wind were varied per the distribution given inWay
et al.8. The importance of nonpecuniary aspects (gamma values),
captured using calibration, was multiplied by a value drawn from the
normal distribution N(1, 0.2). Similarly, fuel costs for gas and coal
were varied by a factor drawn from the same normal distribution.
Possible delays in grid expansion (f.i. to resolve grid congestion) are
expressed as increasing the lead time of solar PV development with a
Poisson distribution. The lifetime of solar panels was varied uni-
formly between 25 and 35 years.

E3ME
The E3ME model is the macro-econometric component of the mod-
elling framework. It is demand-led and features 70 regions and coun-
tries, covering the world. Each EU member and the UK has a
representation of 70 sectors; other regions are represented to 43
economic sectors. The sectors are linked with input-output tables, and
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bilateral trade equations link the various regions and countries. The
energy systemwithin the E3MEmodel consists of equations for 23 fuel
users (for instance chemical industryor air transport), and 12 fuel types
(for instance electricity, or crude oil). Fifteen econometric regressions
calibrated on data from 1970 to 2019 form the basis of the model. The
model can be extended up to 2070. As a demand-led model, it first
computes demand for final goods and services, and the supply of
intermediate goods is estimated using input-output tables and bilat-
eral trade relationships, which then drive employment, investment,
income, induced productivity change, price levels and other macro
variables63.

The IO tables are dynamically coupled to the FTT models via the
energy balances. In specific, the coefficients for coal, oil and gas,
manufactured fuels, electricity and “gas, steam & air conditioning” are
adjusted based on the outcome of the FTT models.

The model uses World Bank estimates of historical GDP growth,
the UN World Population Prospects for demographic change, and the
IEA Energy Balances for energy demand growth, and theWorld Energy
Outlook for baseline future energy demand74. The model does not
incorporate the SSP framework, but our baseline can be compared
most closely to SSP2 (the “middle of the road scenario”38. Philosophi-
cally, the model and SSP2 have the same narrative: a continuation of
current trends.

Population growth in our model is slightly higher than SSP2, but
economic growth is lower compared to SSP2 inmanymajor economies
(but always above SSP3). Total primary energy demand in 2050 is very
similar to SSP2. For more details, see61.

Data availability
Historical generation and capacity of renewable energy from IRENA is
available at https://irena.org/publications/2022/Apr/Renewable-
Capacity-Statistics-2022. Original data from BNEF and IEA are
licensed by these owners, but datasets derived by the authors are
available as part of the model code (see code availability). Source data
for the figures are provided with this paper at https://doi.org/10.6084/
m9.figshare.22659052.

Code availability
The code for the standalone FTTmodel can be found at https://github.
com/cpmodel/FTT_StandAlone/tree/Is_a_solar_future_inevitable75. This
versionwasused for the uncertainty quantificationof Figs. 3 and 5. The
computer code for the full E3ME-FTT model needed to replicate the
study is licensed and not available publicly, but can be obtained from
the authors upon reasonable request.

References
1. IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the

impacts of global warming of 1.5 °C above pre-industrial levels and
related global greenhouse gas emission pathways, in the context of
strengthening the global response to the threat of climate change,
sustainable development, and efforts to eradicate poverty. (Cam-
bridge University Press, 2018). https://doi.org/10.1017/
9781009157940.

2. Dooley, K. & Kartha, S. Land-based negative emissions: Risks for
climate mitigation and impacts on sustainable development. Int
Environ. Agreem. 18, 79–98 (2018).

3. Tanzer, S. E. & Ramírez, A. When are negative emissions negative
emissions? Energy Environ. Sci. 12, 1210–1218 (2019).

4. Sachverständigenrat. Energiewende: Umsteuern zu einer globalen
Klimapolitik. in Zeit für Reformen (Bonifatius GmbH Druck-Buch-
Verlag, 2016).

5. Grubb, M. et al. Induced innovation in energy technologies and
systems: a review of evidence and potential implications for CO2
mitigation. Environ. Res. Lett. 16, 043007 (2021).

6. Lindman, Å. & Söderholm, P. Wind energy and green economy in
Europe: Measuring policy-induced innovation using patent data.
Appl. Energy 179, 1351–1359 (2016).

7. Grubb, M. et al. The New Economics of Innovation and Transition:
Evaluating Opportunities and Risks. https://eeist.co.uk/download/
557/ (2021).

8. Way, R., Mealy, P., Farmer, J. D. & Ives, M. Empirically grounded
technology forecasts and the energy transition. INET Oxford
Working Paper No. 2021-01 (2021).

9. IRENA. Renewable Capacity Statistics 2021. International Renewable
Energy Agency (2021).

10. Ziegler, M. S. & Trancik, J. E. Re-examining rates of lithium-ion
battery technology improvement and cost decline. Energy Environ.
Sci. 14, 1635–1651 (2021).

11. Tong, D. et al. Geophysical constraints on the reliability of solar and
wind power worldwide. Nat. Commun. 12, 1–12 (2021).

12. Sivaram, V. & Kann, S. Solar power needs a more ambitious cost
target. Nat. Energy. 1, 1–3 (2016).

13. Ameli, N. et al. Higher cost of finance exacerbates a climate
investment trap in developing economies. Nat. Commun. 12,
1–12 (2021).

14. IEA (International Energy Agency). The Role of Critical Minerals in
Clean Energy Transitions. (2021).

15. Markard, J.;, Geels, F.W.; & Raven, R. Challenges in the acceleration
of sustainability transitions. Environ. Res. Lett. 15, (2020).

16. Way, R., Mealy, P., Farmer, J. D. & Ives, M. Empirically grounded
technology forecasts and the energy transition. Joule 1–26 https://
doi.org/10.1016/j.joule.2022.08.009 (2022).

17. Meng, J., Way, R., Verdolini, E. & Anadon, L. D. Comparing expert
elicitation and model-based probabilistic technology cost forecasts
for the energy transition.Proc.Natl Acad. Sci. 118, e1917165118 (2021).

18. International Energy Agency.World Energy Outlook 2021. www.iea.
org/weo (2021).

19. Wilson, C., Grubler, A., Bauer, N., Krey, V. & Riahi, K. Future capacity
growth of energy technologies: Are scenarios consistent with his-
torical evidence? Clim. Change 118, 381–395 (2013).

20. Grubler, A. et al. A low energy demand scenario for meeting the 1.5
°C target and sustainable development goals without negative
emission technologies. Nat. Energy 3, 515–527 (2018).

21. Victoria, M. et al. Solar photovoltaics is ready to power a sustainable
future. Joule vol. 5 1041–1056 (Cell Press, 2021).

22. Nemet, G.How solar energy became cheap: amodel for low-carbon
innovation. (Taylor & Francis, 2019).

23. Rogers, E. Diffusion of Innovations. (Free Press, 2003).
24. Farmer, J. D. & Lafond, F. How predictable is technological pro-

gress? Res Policy 45, 647–665 (2016).
25. Sharpe, S. & Lenton, T.M. Upward-scaling tipping cascades tomeet

climate goals: plausible grounds for hope. 21, 421–433 https://doi.
org/10.1080/14693062.2020.1870097 (2021).

26. Sweerts, B., Detz, R. J. & van der Zwaan, B. Evaluating the Role of
Unit Size in Learning-by-Doing of Energy Technologies. Joule 4,
967–970 (2020).

27. Wilson, C. et al. Granular technologies to accelerate decarboniza-
tion: Smaller, modular energy technologies have advantages. Sci-
ence (1979) 368, 36–39 (2020).

28. Malhotra, A. & Schmidt, T. S. Accelerating Low-Carbon Innovation.
Joule 4, 2259–2267 (2020).

29. Roy, P., Kumar Sinha, N., Tiwari, S. & Khare, A. A review on per-
ovskite solar cells: Evolutionof architecture, fabrication techniques,
commercialization issues and status. Solar Energy 198,
665–688 (2020).

30. Ma, S. et al. Development of encapsulation strategies towards the
commercialization of perovskite solar cells. Energy. Environ. Sci.
https://doi.org/10.1039/d1ee02882k (2022).

Article https://doi.org/10.1038/s41467-023-41971-7

Nature Communications |         (2023) 14:6542 8

https://irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022
https://irena.org/publications/2022/Apr/Renewable-Capacity-Statistics-2022
https://doi.org/10.6084/m9.figshare.22659052
https://doi.org/10.6084/m9.figshare.22659052
https://github.com/cpmodel/FTT_StandAlone/tree/Is_a_solar_future_inevitable
https://github.com/cpmodel/FTT_StandAlone/tree/Is_a_solar_future_inevitable
https://doi.org/10.1017/9781009157940
https://doi.org/10.1017/9781009157940
https://eeist.co.uk/download/557/
https://eeist.co.uk/download/557/
https://doi.org/10.1016/j.joule.2022.08.009
https://doi.org/10.1016/j.joule.2022.08.009
http://www.iea.org/weo
http://www.iea.org/weo
https://doi.org/10.1080/14693062.2020.1870097
https://doi.org/10.1080/14693062.2020.1870097
https://doi.org/10.1039/d1ee02882k


31. Egli, F., Steffen, B. & Schmidt, T. S. A dynamic analysis of financing
conditions for renewable energy technologies. Nat. Energy. 3,
1084–1092 (2018).

32. Daniela-Abigail, H. L. et al. Does recycling solar panels make this
renewable resource sustainable? Evidence supported by environ-
mental, economic, and social dimensions. Sustain Cities Soc. 77,
103539 (2022).

33. Ziegler, M. S., Song, J. & Trancik, J. E. Determinants of lithium-ion
battery technology cost decline. Energy Environ. Sci. 14,
6074–6098 (2021).

34. Jaxa-Rozen, M. & Trutnevyte, E. Sources of uncertainty in long-term
global scenarios of solar photovoltaic technology. Nat. Clim.
Change. 11, 266–273 (2021).

35. Li, F. G. N., Trutnevyte, E. & Strachan, N. A review of socio-technical
energy transition (STET) models. Technol. Forecast Soc. Change
100, 290–305 (2015).

36. Wilson, C. Up-scaling, formative phases, and learning in the his-
torical diffusion of energy technologies. Energy Policy 50,
81–94 (2012).

37. BloombergNEF. 2H 2020 LCOE Data Viewer (2021).
38. Riahi, K. et al. The Shared Socioeconomic Pathways and their

energy, land use, and greenhouse gas emissions implications: An
overview. Glob. Environ. Change 42, 153–168 (2017).

39. IRENA. Future of Solar Photovoltaic: Deployment, investment, tech-
nology, grid integration and socio-economic aspects (A Global
Energy Transformation paper). (International Renewable Energy
Agency, 2019).

40. Matsuo, Y. et al. Investigating the economics of the power sector
under highpenetration of variable renewable energies.Appl Energy
267, 113956 (2020).

41. Simsek, Y. et al. FTT: Power 2.0: A global simulationmodel of power
technology diffusion with learning-by-doing and renewables inte-
gration. In preperation.

42. Climate Policy Initiative. Global Landscape of Climate Finance
2021. (2021).

43. Kling, G., Volz, U., Murinde, V. & Ayas, S. The impact of climate
vulnerability on firms’ cost of capital and access to finance. World
Dev. 137, 105131 (2021).

44. Rickman, J., Kothari, S., Larosa, F. & Ameli, N. The Unequal Dis-
tribution of International Climate Finance Flows and Its Underlying
Drivers. https://doi.org/10.21203/RS.3.RS-1188981/V1 (2022).

45. Ameli, N., Kothari, S. & Grubb, M. Misplaced expectations from
climate disclosure initiatives.Nat. Clim. Change. 11, 917–924 (2021).

46. Bilir, L. K., Chor, D. & Manova, K. Host-country financial develop-
ment andmultinational activity. Eur. Econ. Rev. 115, 192–220 (2019).

47. Kreibiehl, S., et al. Investment and finance. inClimate Change 2022:
Mitigation of Climate Change. Contribution of Working Group III to
the Sixth Assessment Report of the Intergovernmental Panel on
ClimateChange (ed.Shukla P. R., et al) (CambridgeUniversity Press,
2022). https://doi.org/10.1017/9781009157926.017.

48. Kleijn, R., van der Voet, E., Kramer, G. J., van Oers, L. & van der
Giesen, C. Metal requirements of low-carbon power generation.
Energy 36, 5640–5648 (2011).

49. Vidal, O., Goffé, B. & Arndt, N. Metals for a low-carbon society. Nat.
Geosci. 6, 894–896 (2013).

50. Sonter, L. J., Dade,M. C.,Watson, J. E.M. & Valenta, R. K. Renewable
energy production will exacerbate mining threats to biodiversity.
Nat. Commun. 11, 1–6 (2020).

51. Gielen, D. Critical minerals for the energy transition. (International
Renewable Energy Agency, 2021).

52. Coulomb, R., Dietz, S., Maria Godunova, T. B. N. Critical Minerals
Today and in 2030: AnAnalysis for OECDCountries. https://doi.org/
10.1787/19970900 (2015).

53. Ali, S. H. et al. Mineral supply for sustainable development requires
resource governance. Nat. 2017 543:7645 543, 367–372 (2017).

54. Masson-Delmotte, V. et al. Global warming of 1.5 °C. An IPCC Spe-
cial Report on the impacts of global warming of 1.5 °C above pre-
industrial levels and related global greenhouse gas emission path-
ways, in the context of strengthening the global response to the
threat of climate change. (Cambridge University Press, 2018).

55. Miskin, C. K. et al. Sustainable co-production of food and solar
power to relax land-use constraints. Nat. Sustainab. 2019 2:10 2,
972–980 (2019).

56. Deshmukh, R., Wu, G. C., Callaway, D. S. & Phadke, A. Geospatial
and techno-economic analysis of wind and solar resources in India.
Renew. Energy 134, 947–960 (2019).

57. Almeida, R. M. et al. Floating solar power could help fight climate
change — let’s get it right. Nat. 606, 246–249 (2022).

58. Pai, S., Emmerling, J., Drouet, L., Zerriffi, H. & Jewell, J.Meetingwell-
below 2 °C target would increase energy sector jobs globally. One
Earth 4, 1026–1036 (2021).

59. Newell, P. & Mulvaney, D. The political economy of the ‘just transi-
tion’. Geogr. J. 179, 132–140 (2013).

60. Semieniuk,G., Campiglio, E.,Mercure, J. F., Volz, U.& Edwards,N. R.
Low-carbon transition risks for finance. WIREs: Climate Change 12,
e678 (2021).

61. Mercure, J. F. et al. Environmental impact assessment for climate
change policy with the simulation-based integrated assessment
model E3ME-FTT-GENIE. Energy Strategy Rev. 20, 195–208 (2018).

62. Trutnevyte, E. et al. Societal Transformations in Models for Energy
and Climate Policy: The Ambitious Next Step. One Earth. 1,
423–433 (2019).

63. Mercure, J. F. et al. Reframing incentives for climate policy action.
Nat. Energy 6, 1133–1143 (2021).

64. Mercure, J.-F. F., Lam, A., Billington, S. & Pollitt, H. Integrated
assessmentmodelling as a positive science: private passenger road
transport policies to meet a climate target well below 2 °C. Clim.
Change 151, 109–129 (2018).

65. Knobloch, F., Pollitt, H., Chewpreecha, U., Daioglou, V. &
Mercure, J. F. Simulating the deep decarbonisation of resi-
dential heatingfor limiting global warming to 1.5 °C. Energy
Effic. 12, 521–550 (2019).

66. Vercoulen, P. et al. Carbon-Neutral Steel Production and Its Impact
on the Economies of China, Japan, and Korea: A Simulation with
E3ME-FTT:Steel. Energies 2023 16, 4498 (2023).Vol. 16, Page 4498.

67. Mercure, J.-F. An age structured demographic theory of technolo-
gical change. J Evol Econ 25, (2015).

68. Ueckerdt, F. et al. Decarbonizingglobal power supply under region-
specific consideration of challenges and options of integrating
variable renewables in the REMIND model. Energy Econ. 64,
665–684 (2017).

69. Bosch, J., Staffell, I. & Hawkes, A. D. Temporally-explicit and
spatially-resolved global onshore wind energy potentials. Energy
131, 207–217 (2017).

70. Hoogwijk, M. On the global and regional potential of renewable
energy sources. (Utrecht University, 2004).

71. Teske, S., Nagrath, K., Morris, T. & Dooley, K. Renewable energy
resource assessment.Achieving the Paris Climate AgreementGoals:
Global and Regional 100% Renewable Energy Scenarios with Non-
Energy GHG Pathways for +1.5C and +2C 161–173 https://doi.org/10.
1007/978-3-030-05843-2_7/TABLES/3 (Springer Cham, 2019).

72. Joshi, S. et al. High resolution global spatiotemporal assessment of
rooftop solar photovoltaics potential for renewable electricity
generation. Nat. Commun. 12, 1–15 (2021).

73. da Silva Lima, L. et al. Life cycle assessment of lithium-ion batteries
and vanadium redox flow batteries-based renewable energy sto-
rage systems. Sustain. Energy Technol. Assess. 46, 101286 (2021).

74. Bui, H. et al. E3ME Model Manual v9.0. www.e3me.com (2022).
75. FTT Community. FTT:Power Standalone. Available at https://

zenodo.org/badge/latestdoi/579188103 (2023).

Article https://doi.org/10.1038/s41467-023-41971-7

Nature Communications |         (2023) 14:6542 9

https://doi.org/10.21203/RS.3.RS-1188981/V1
https://doi.org/10.1017/9781009157926.017
https://doi.org/10.1787/19970900
https://doi.org/10.1787/19970900
https://doi.org/10.1007/978-3-030-05843-2_7/TABLES/3
https://doi.org/10.1007/978-3-030-05843-2_7/TABLES/3
http://www.e3me.com
https://zenodo.org/badge/latestdoi/579188103
https://zenodo.org/badge/latestdoi/579188103


Acknowledgements
JFM, FJMMN and PV received funding from the UK Department for
Business, Energy and Industrial Strategy (BEIS) from the EEIST project.
NA acknowledges support from the European Research Council (ERC)
under the European Union’s Horizon 2020 research and innovation
programme (grant agreement No 802891), a grant which also funded
SK., FL and JR. We would like to thank Simon Sharpe for discussion that
improved the discussion on policy implications. We would also like to
thank Doyne Farmer for his valuable feedback.

Author contributions
F.J.M.M.N. coordinated and performed the research, with contributions
fromJ.-F.M., andN.A. F.J.M.M.Nand J.-F.M.wrote the articlewith support
from N.A., S.K. and F.L. N.A., F.L, S.K., and J.R. collected the BNEF data.
F.J.M.M.N. led the model improvements and ran the simulations, with
support from P.V., J.-F.M and H.P.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-41971-7.

Correspondence and requests for materials should be addressed to
Femke J. M. M. Nijsse.

Peer review information Nature Communications thanks the anon-
ymous reviewers for their contribution to the peer review of this work. A
peer review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-41971-7

Nature Communications |         (2023) 14:6542 10

https://doi.org/10.1038/s41467-023-41971-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The momentum of the solar energy transition
	Results
	Towards a new baseline scenario
	Overcoming barriers

	Discussion
	Methods
	FTT
	FTT
	FTT:Power
	E3ME

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




